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Abstract Using the special-purpose computer Janus, we follow the nonequilibrium dynam-
ics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of
integral estimators for the coherence and correlation lengths allows us to study dynamic het-
erogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-
Anderson order parameter below the critical temperature. We obtain good agreement with
experimental determinations of the temperature-dependent decay exponents for the ther-
moremanent magnetization. This magnitude is observed to scale with the much harder to
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measure coherence length, a potentially useful result for experimentalists. The exponents
for energy relaxation display a linear dependence on temperature and reasonable extrapola-
tions to the critical point. We conclude examining the time growth of the coherence length,
with a comparison of critical and activated dynamics.

Keywords Spin glasses · Nonequilibrium dynamics · Characteristic length scales

1 Introduction

Below their glass temperature, Spin Glasses [1] (SG) are perennially out of equilibrium. The
understanding of their sophisticated dynamical behavior is a long standing challenge both
to theoretical and to experimental physics.

Aging [2] is a feature of SG dynamics that shows up even in the simplest experimental
protocol, the direct quench. In these experiments, the SG is cooled as fast as possible to
the working temperature below the critical one, T < Tc. It is then let to equilibrate for a
waiting time, tw, its properties to be probed at a later time, t + tw. For instance one may
cool the SG in the presence of an external field, which is switched off at time tw. The so-
called thermoremanent magnetization decays with time, but the larger tw is, the slower the
decay. In fact, it has been claimed that, if the cooling is fast enough, the thermoremanent
magnetization depends upon t and tw only through the combination t/tw, at least for 10−3 <

t/tw < 10 and tw in the range 50–104 s [3]. In other words, the only characteristic time scale
is the sample’s own age as a glass, tw (this behavior is named Full Aging). Note, however,
that there is some controversy regarding the natural time variable which could rather be t/tμw
with μ slightly less than one [4].

The time evolution is believed to be caused by the growth of coherent spatial domains.
Great importance is ascribed to the size of these domains, the coherence length ξ(tw), which
is accessible to experiments through estimates of Zeeman energies [5]. The time evolution
of ξ(tw) plays a crucial role in the droplets theory of SG nonequilibrium isothermal dy-
namics [6]. Perhaps unsurprisingly, it also plays a central role in yet incipient attempts to
rationalize memory and rejuvenation experiments (see [7–13] and references therein), where
the experimentalist probes the glassy state by playing with the working temperature.

Even for the simplest direct quench experiment, there is some polemics regarding the
growth law of ξ(tw): some theories advocate a logarithmic growth [6], while a power law de-
scribes numerical simulations [14] or experiments [5] better (a somewhat intermediate scal-
ing has been proposed by the Saclay group [15] and found useful in experimental work [11],
see also Sect. 6 below). Nevertheless, two facts are firmly established: (i) the lower T is, the
slower the growth of ξ(tw) and (ii) ξ ∼ 100 lattice spacings, even for T ∼ Tc and tw as large
as 104 s [5]. Hence, the study of SG in thermal equilibrium seems confined to nanometric
samples, or to numerical simulations.

There is clear evidence, both experimental [16] and theoretical [17, 18], for a thermo-
dynamic origin of this sluggish dynamics. A SG phase appears below the critical tempera-
ture, Tc. Several theories propose mutually contradicting scenarios for the equilibrium SG
phase: the droplets [19–22], replica symmetry breaking (RSB) [23], and the intermediate
Trivial-Non-Trivial (TNT) picture [24, 25]. Even if this equilibrium phase is experimentally
unreachable (at least in human time scales), we now know [26, 27] that it is nevertheless
relevant to the nonequilibrium dynamics probed by experiments.

Droplets expects two equilibrium states related by global spin reversal. The SG order
parameter, the spin overlap q (precise definitions are given below in Sect. 2), takes only
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two values q = ±qEA. In the RSB scenario an infinite number of pure states influence the
dynamics [23, 28–30], so that all −qEA ≤q ≤qEA are reachable. TNT [24, 25] describes
the SG phase similarly to an antiferromagnet with random boundary conditions: even if q

behaves as for RSB systems, TNT agrees with droplets in the vanishing surface to volume
ratio of the largest thermally activated spin domains (i.e. the link-overlap defined below
takes a single value).

Droplets’ isothermal aging [6] is that of a disguised ferromagnet.1 Indeed, superuniver-
sality, the emerging picture of isothermal aging, has been found useful for the study of
basically all coarsening systems. For T < Tc the growing domains are compact geometrical
objects. Even if the surface of these domains might be fractal, their surface to volume ratio
vanishes as ξ(tw) diverges, see (13) below. Inside them, the spin overlap coherently takes
one of its possible equilibrium values q = ±qEA. Time dependencies are entirely encoded
in the growth law of these domains, since correlation functions (in principle depending on
time and distance, r) are universal functions of r/ξ(tw).

We are not aware of any investigation of the dynamical consequences of the TNT picture.
Nevertheless, the antiferromagnet analogy suggests that TNT systems will show coarsening
behavior.

As for the RSB scenario, equilibrium states with a vanishing order parameter q =0 do
exist. Hence, the nonequilibrium dynamics starts, and remains forever, with a vanishing
order parameter. Furthermore, the replicon, a Goldstone mode analogous to magnons in
Heisenberg ferromagnets, is present for all T < Tc [31]. As a consequence, the spin overlap
is expected to vanish inside each domain in the limit of a large ξ(tw). Furthermore, q is not a
privileged observable (overlap equivalence [28]): the link overlap displays equivalent Aging
behavior.

In order to be quantitative, these theoretical pictures of nonequilibrium dynamics need
numerical computations for model systems. Indeed, several investigations have been car-
ried out even for the simplest cooling protocol, the direct quench [12–14, 32–39]. A major
drawback of this approach, however, is the shortness of the reachable times. Indeed, one
Monte Carlo Step (MCS) corresponds to 10−12 s [1]. The experimental scale is at 1014

MCS (∼100 s), while typical nonequilibrium simulations reach ∼10−5s. The problem has
been challenging enough to compel physicists to design high-performance computers for
SG simulations [40–44].

The situation has dramatically changed thanks to Janus [42–44], an FPGA computer that
allows us to simulate the dynamics of a reasonably large SG system for eleven orders of
magnitude, from picoseconds to tenths of a second.2 Thanks to Janus, we have recently per-
formed a study of the nonequilibrium dynamics of the Ising Spin Glass [45]. We introduced
novel analysis techniques that allow the computation of the coherence length in a model
independent way. This was crucial to obtain evidence for a replicon correlator. Furthermore,
we showed how to investigate overlap equivalence and presented evidence for it.

In this work, we shall concentrate on the simplest protocol, the direct quench, for an
Ising SG. We present a detailed study of dynamic heterogeneities, an aspect untouched upon
in [45] in spite of its relevance [36–39]. We show the first conclusive numerical evidence
for a growing correlation length in the nonequilibrium dynamics, and its relationship with
the coherence length ξ(tw) is explored. Furthermore, we compute the anomalous dimension

1However, when the temperature is varied, droplets theory predicts a more complex behavior for SGs than
for ferromagnets, due to temperature chaos.
2The wall-clock time needed for this computation on a cubic lattice of 80 lattice spacings is some 25 days.



1124 F. Belletti et al.

for the two-time, two-site propagator (see definitions below). Due to their central role, a
systematic way of extracting coherence (or correlation) lengths from numerical data is called
for, but it has scarcely been investigated in the past (see however [13, 14, 32]). This is why
we take here the occasion to give full details on our integral estimators [45] (see also [32]).

The layout of the rest of this paper is as follows. In Sect. 2 we define the model as
well as the correlation functions and time sectors. We describe our simulations, which have
been extended as compared with [45] and discuss the difficult topic of extracting the best
fit parameters from extremely correlated data. Sect. 3 is devoted to the integral estimators
of the coherence (or correlation) lengths. To the best of our knowledge, the investigation
of this technical (but crucial) issue was started in the context of lattice field theories [46].
These integral estimators were instrumental to develop modern Finite Size Scaling tech-
niques for equilibrium critical phenomena [47–50] and, therefore, to establish the existence
of the Spin Glass phase in three dimensions [17, 18, 51, 52]. In the context of nonequilibrium
dynamics, new aspects (and opportunities) appear. In Sect. 4 we investigate the dynamic het-
erogeneities. In Sect. 5, the information gathered on length scales is used to analyze time
correlation functions (and to extrapolate them to infinite time). We also study the thermore-
manent magnetization. The crucial issue of the time growth of the coherence length ξ(tw) is
considered in Sect. 6. We present our conclusions in Sect. 7

2 Model, Correlation Functions, Time Sectors

2.1 Model

The D=3 Edwards-Anderson Hamiltonian is defined in terms of two types of degrees of
freedom: dynamical and quenched. The dynamical ones are the Ising spins σx =±1, which
are placed on the nodes, x, of a cubic lattice of linear size L and periodic boundary condi-
tions. The nondynamical (or quenched) ones are coupling constants assigned to the lattice
links that join pairs of lattice nearest neighbors, Jx,y. In this work Jx,y=±1 with 50% prob-
ability. Each assignment of the {Jx,y} will be named a sample, and, once it is fixed, it will
never be varied [1].

The interaction energy for the spins is

H = −
∑

〈x,y〉
Jx,yσx σy, (1)

(〈· · · 〉 denotes lattice nearest neighbors). The choice J 2 = 1 fixes our energy units. We work
in the so-called quenched approximation: any quantity (either a thermal mean value or a time
dependent magnitude, see below) is supposed to be computed first for a given assignment
of the couplings. Only afterwards the resulting value is averaged over the Jx,y, which we
denote by (· · · ).3

The spins evolve in time with Heat-Bath dynamics (see, e.g., [53]), which belongs to the
universality class of physical evolution. The starting spin configuration is taken to be fully
disordered, to mimic the experimental direct quench protocol.

3In principle, one should average many thermal histories for each sample and then compute the average over
the disorder. In practice, errors can be largely reduced if one generates two histories per sample but generates
more samples, since both sources of error are statistically independent. The claims on lack of self-averageness
made in Sect. 2.2 depend critically on this choice. In fact, were one to simulate an infinite number of thermal
trajectories per sample, the spin glass susceptibility would be self-averaging.
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Note that the Hamiltonian (1) has a global Z2 symmetry (if all spins are simultaneously
reversed σx → −σx the energy is unchanged). This symmetry gets spontaneously broken
in three dimensions upon lowering the temperature at the SG transition at Tc = 1.109(10)

[54, 55].4

Finally, let us recall that the average over the coupling constants induces a non dynamical
gauge symmetry [56]. Let us choose a random sign per site εx = ±1 . Hence, the energy (1)
is invariant under the transformation

sx → εxsx,

Jx,y → εxεyJx,y
(2)

Since the gauge transformed couplings εxεyJx,y are just as probable as the original ones, the
quenched mean value of an arbitrary function of the spins O({sx}) is identical to that of its
gauge-average

∑
{εx=±1} O({εxsx})/2LD

, which typically is an uninteresting constant value.
Constructing non trivial gauge-invariant observables is the subject of the next subsection.

2.2 Observables

A standard way of forming operators that are gauge-invariant under (2) is to consider real
replicas. These are two statistically independent systems, {σ (1)

x } and {σ (2)
x }, evolving in time

with the very same set of couplings. Their (obviously gauge-invariant) overlap field at time
tw is

qx(tw) = σ (1)
x (tw)σ (2)

x (tw) . (3)

A slight modification consists in using just one of the real replicas, say {σ (1)
x }, but con-

sidering times tw and t + tw

cx(t, tw) = σ (1)
x (t + tw)σ (1)

x (tw) . (4)

In many of the quantities defined below using cx(t, tw), one may obviously gain statistics by
averaging over the two real replicas. We have done so whenever it was possible, but this will
not be explicitly indicated. We consider three types of quantities:

1. Single-time global quantities:

– Time-dependent energy density (N = LD is the number of spins in the lattice)

e(tw) = − 1

N

∑

〈x,y〉
Jx,yσx(tw) σy(tw) . (5)

Recall that 〈x, y〉 indicates summation restricted to lattice nearest neighbors.
– The spin glass susceptibility χSG(tw) is defined in terms of the SG order parameter

q(tw) = 1

N

∑

x

qx(tw) . (6)

4The alert reader will recall that the gauge symmetry of (2) forbids a spontaneous magnetization. Indeed, see
Sect. 2.2, one needs to introduce an independently evolving copy of the spin configuration which promotes
the symmetry to Z2 × Z2. This is the symmetry which is actually spontaneously broken.
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Of course, the quenched mean value q(tw) vanishes in the nonequilibrium regime
where the system size is much larger than the coherence length ξ(tw) . The suscep-
tibility

χSG(tw) = Nq2(tw) , (7)

steadily grows with the size of the coherent domains. Note that fluctuation-dissipation
relations imply that χSG is basically the nonlinear magnetic susceptibility.

2. Two-times global correlation functions:

• Spin-spin correlations:

C(t, tw) = 1

N

∑

x

cx(t, tw) . (8)

The function C(t, tw) carries many meanings:
(a) If the first argument tw is held fixed, and C(t, tw) is studied as t grows, it is just the

thermoremanent magnetization. Indeed, because of the symmetry (2) the uniform
configuration that would have been enforced by holding the spin glass in a strong
external magnetic field can be gauged to the spin configuration found at time tw
after a random start.

(b) On the other hand, in the pseudoequilibrium regime t � tw, the (real part of
the) magnetic susceptibility at frequency ω = 2π/T is given by the fluctuation-
dissipation formula (1 − C(t, tw))/T .

(c) Another point we shall be concerned with is the computation of the SG order
parameter. It may be defined from the translationally invariant time sector5

C∞(t) = lim
tw→∞C(t, tw) , (9)

as

qEA = lim
t→∞C∞(t) . (10)

The computation of qEA is notoriously difficult [35]. Note that other authors [36, 37]
subtract qEA from C∞(t) in such a way that it tends to zero for large t .

– The link correlation function

Clink(t, tw) = 1

3N

∑

〈x,y〉
cx(t, tw)cy(t, tw) , (11)

carries information on interfaces. Indeed, consider a coherent spin-flip in a domain half
of the system size. This will induce a dramatic change in C(t, tw). On the other hand,
the change in Clink will be concentrated at the lattice links that are cut by the surface
of the flipped domain. If the geometry of this flipped region is that of a compact object
with a vanishing surface to volume ratio, Clink will remain basically unchanged.

5By analogy, one may define a μ time sector by the limit C
(μ)∞ (s) = limtw→∞ C(st

μ
w , tw) . The transla-

tionally invariant sector is just μ = 0. In the range 0 < s < ∞ the correlation function varies in qEA <

C
(μ=0)∞ (s) < 1 . Full Aging [3] would imply that when 0 < s < ∞, C

(μ=1)∞ (s) goes from qEA to 0. At the
present moment, it is unclear whether the full range of variation of the correlation function, 0 < C < 1, may
be covered with just two time sectors.
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3. Space dependent correlation functions:

– Single time correlation function:

C4(r, tw) = 1

N

∑

x

qx(tw)qx+r(tw) . (12)

The long distance decay of C4(r, tw) defines the coherence length:

C4(r, tw) ∼ 1

ra
f (r/ξ(tw)) . (13)

The exponent a is relevant, because C4 at distances ξ(tw) tends to zero as ξ(tw)−a .
For coarsening systems, because a = 0, the order parameter does not vanish inside
a domain. For the Ising SG in three dimensions the exponent was found to be a ≈
0.4 [45, 57] (see Sect. 3.2 for details). The long distance damping function f seems
to decay faster than exponentially, f (x) = exp[−xβ] with β ∼ 1.5 [13, 14]. Note
as well that, at the critical point, a is related to the anomalous dimension, the latest
estimate being a(Tc) = 1 + η = 0.625(10) [54, 55]. The physical origin for a nonzero
a below Tc is in the replicon mode. In fact, it was conjectured that for all T < Tc,
a(T ) = a(Tc)/2 [31]. In [45] we found values not far from this prediction. Note that
the exponent a is discontinuous at Tc [58].

– The two-time spatial correlation function (see [36–38])

C2+2(r, t, tw) = 1

N

∑

x

[
cx(t, tw)cx+r(t, tw) − C2(t, tw)

]
, (14)

(one could also subtract C(t, tw)
2
, but due to the self-averaging character of C this

leads to the same thermodynamic limit). This correlation function is rather natural for
the structural glasses problem, see for instance [59], where an adequate order parame-
ter is unknown.

There is a simple probabilistic interpretation of C2+2. Let us call a defect a site
where cx(t, tw) = −1 and let n(t, tw) be the density of these defects. We trivially have
C(t, tw) = 1 − 2n(t, tw). The conditional probability of having a defect at site x + r
knowing that there already is a defect at site x is n(t, tw)g(r), where the defects’ pair-
correlation function is g(r). Hence, C2+2(r, t, tw) is just 4n2(t, tw)

(
g(r) − 1

)
.

The long distance decay of C2+2(r, t, tw) defines the correlation length ζ(t, tw)6

C2+2(r, t, tw) ∼ 1

rb
g (r/ζ(t, tw)) . (15)

Basically nothing is known on exponent b nor on the long distance damping function g.
In [36–38], this decay was fitted with b = 0 and g(x) = e−x , but the smallness of
the found correlation lengths ζ(t, tw) < 2 for t + tw ≤ 1.3 × 108 [36–38], does not

6The difference between coherence and correlation length is a subtle one. In this work, we shall reserve
the name ‘coherence length’, which is computed from a non-connected correlation function, (12), for the
typical size of the coherent domains. The correlation length, which is computed from a connected correlation
function, (14), refers to the characteristic length for defect correlation. In particular, the coherence length
diverges when tw → ∞, while the correlation length may or may not diverge in that limit.
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permit strong claims. In the structural glasses context [59], one tries to interpret ζ(t, tw)

as a coherence length such as ξ(tw), rather than as correlation length. As we shall
empirically show, this might be very reasonable in the limit t 
 tw.

In an RSB framework, the relaxation within a single state corresponds to the
range qEA < C(t, tw) < 1 (the further decay of C(t, tw) corresponds to the explo-
ration of new states). This regime is quite naturally identified with the condition that
ζ(t, tw) � ξ(tw). In fact, qEA yields the (correlated) percolation threshold for defects.

Sometimes we will find it useful to change variables from t to C. This is always
feasible, because C(t, tw) is a monotonically decreasing function of t for fixed tw. The
accuracy of our numerical data allows this change of variable without difficulty (we
have used a cubic spline, since the function C(t, tw) was sampled at a selected set of
times).

Finally, note that C2+2 is the difference of two statistically correlated quantities
(hence, the statistical error in the difference may be expected to be smaller than that
for each of the two terms). This can be adequately taken into account by means of a
jackknife procedure (see, e.g., [53]).

All the quantities defined so far are self-averaging (i.e., their relative errors for a fixed
number of samples decrease as N−1/2), with the notorious exception of χSG(tw). This fact
provides justification for the standard strategy in nonequilibrium studies (both numerical
and experimental!) of averaging results over very few samples.

Self-averageness stems from the fact that the computed/measured quantities are averages
of local observables taken over the full system (which provides a number of statistically
independent summands of the order of LD/ξD(tw). The exception, χSG(tw) (7), is actually
non local as it is the integral over the whole system of C4(r, tw), Indeed, the central limit
theorem suggests that the probability distribution function of q(tw) should tend to a Gaussian
when L → ∞. Hence, the variance for χSG(tw) is ∼2χ2

SG(tw) in the limit of a large system.

2.3 Simulation Details

The Janus computer [42–44] can be programmed for the simulation of the single spin flip
Heat Bath dynamics up to a very large number of lattice sweeps (units of Monte Carlo time)
for systems of linear sizes up to L ∼ 100.7

We have spent the most effort in simulating the dynamics of the model described by
(1) in the direct quench protocol described in the Introduction, for several runs of about a
hundred samples of linear size L = 80 and up to 1011 Monte Carlo steps (we recall that a
single step corresponds to roughly 1 picosecond of time in the real world). Details of our
simulations are given in Table 1. We extend here the analysis of the simulations reported
on [45], but additional simulations have also been carried out. Most notably, we simulated
768 new samples of size L = 80 at T = 0.7 up to 1010 in Monte Carlo time, which have
been useful to improve and test the statistical accuracy in some of our analyses.

We wrote to disk the spin configurations at all times of the form [2i/4] + [2j/4], with
integer i and j (the square brackets stand for the integer part). Hence, our t and tw are of the
form [2i/4]. Nevertheless, we computed C2+2 only for powers of two, due to the increased
computational effort.

A final note on the time span of our runs. Much to our surprise, we found in [45] that, even
for our very large systems, finite size effects in the coherence length can be resolved with

7The overall parallel update rate for L = 80 systems of the whole Janus—256 nodes—is 78 femtoseconds
per spin.
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Table 1 Parameters of our
simulations. The overall
wall-clock time needed was less
than six weeks. We highlight
with boldface the simulations
performed after completion
of [45]. Recall that we take the
critical temperature from [54,
55], Tc = 1.109(10). The full
analysis of spin configurations
was performed offline

L T MC steps Ns

80 0.6 1011 96

80 0.7 1011 63

80 0.8 1011 96

80 0.9 2.8 × 1010 32

80 1.1 4.2 × 109 32

80 1.15 2.8 × 1010 32

80 0.7 1010 768

40 0.8 2.2 × 108 2218

our statistical accuracy. In this work, we have restricted ourselves to the time window that
is not affected by them. The single exception will be in the analysis of energy relaxation,
Sect. 5.2, where this range is too short. Nevertheless, we have explicitly checked that the
energy suffers from smaller finite size effects than the coherence length.

2.4 Fits for Extremely Correlated Data

Computing the best fit parameters and estimating errors from extremely correlated data sets
presents a common, and still not satisfactorily solved, difficulty in many numerical studies.
For instance, our study of C(t, tw) requires considering approximately 104 random variables
extracted from a set of only 63–768 samples. The standard approach, computing the covari-
ance matrix and inverting it, fails because this matrix is necessarily singular.8 In this paper
we shall follow an empirical procedure. We shall consider only the diagonal part of the co-
variance matrix in order to minimize χ2 when performing fits. Unless otherwise indicated,
we shall always use this diagonal χ2 in the rest of the paper. Yet, in order to take correlations
into account we shall perform this procedure for each jackknife block and later on compute
error estimates from their fluctuations. As we have run simulations with both 63 (from [45])
and 768 samples for T = 0.7, we are in a position to test this method by comparing the
results obtained and the ones to be expected for 63 samples (see Sect. 3.2).

The main drawback of this approach is that the standard χ2 test of fit likelihood cannot
be applied blindly. Of course, were the exact fitting function known, the average value of
diagonal χ2 should be 1 per degree of freedom. Yet, since the obtained fitting function may
coherently fluctuate with the numerical data, we shall encounter anomalously low values of
diagonal χ2. We examine this problem in Sect. 3.2, empirically finding that χ2 behaves as
if there were many fewer degrees of freedom than what one would expect.

8Consider computing the covariance matrix for a set of NO random variables from Ns < NO samples. Let
Oi(s), i = 1,2, . . . ,NO and s = 1,2, . . . ,Ns , be the value of the i-th random variable on the s-th sample,
and let us form the NO × Ns matrix T , with Ti,s = Oi(s) − ∑

r = 1Ns Oi(r)/Ns . The standard estimate
of the covariance matrix is just T T †/(Ns(Ns − 1)). Now, it is clear that (reordering the rows if needed) the
last NO − Ns rows of T are a linear combination of the others. In other words, the results are indistinguish-
able from the ill-conditioned situation where these last NO − Ns random variables are the very same linear
combination of the first ones. Once this is realized it is trivial to show that the range of the size NO × NO

covariance matrix is at most Ns.



1130 F. Belletti et al.

3 Integral Estimators of Characteristic Length Scales

The need to estimate characteristic length scales, such as ξ(tw) or ζ(t, tw) is a recurrent
theme in lattice gauge theory and statistical mechanics. The more straightforward method
is to consider a particular functional form for the long distance damping function in (13) or
(15). One of the problems with this approach, already identified in the study of equilibrium
critical phenomena, is that it is extremely difficult to extract from numerical data simul-
taneously the length scale and the exponent for the algebraic decay. Note that quite often
computing the exponent is as important as extracting the length scale to draw physical con-
clusions. The situation worsens if the functional form is only an educated guess, which is
precisely our case. Furthermore, numerical data for the correlation function at different lat-
tice sites suffer from dramatic statistical correlations, which complicates fitting procedures.

A different approach, the use of integral estimators, has been known since the 1980s [46];
but only in the mid 1990s (see e.g. [47–50]) it was realized that it provided an enormous
simplification. The use of integral estimators for the length scale enables determinations of
exponents such as a in (13), which are completely independent from the functional form of
the long distance damping. The only place left for systematic errors is in finite size effects
or in scaling corrections (when the considered range for the variation of length scales such
as ξ(tw) is too small). As for the determination of the length scale itself, integral estimators
are guaranteed to produce numbers that scale as the inaccessible true ξ(tw), provided that it
is large enough.

The fact that the correlation functions that will be considered here, C4 and C2+2, are self-
averaging in a nonequilibrium context provides an impressive error reduction, which is not
accessible for equilibrium studies.

Our chosen example to explain the method will be that of C4 and the determination of
the coherence length and of the exponent a.

3.1 The Coherence Length

Cooper et al. [46] suggested the second moment determination of the characteristic length,

ξ (2)(tw) ≡ 1

2 sinπ/L

[
Ĉ4(0, tw)

Ĉ4(kmin, tw)
− 1

]1/2

, (16)

where Ĉ4(k, tw) is the Fourier transform of C4(r, tw), and kmin is the minimal non-vanishing
wave vector allowed by boundary conditions (kmin = (2π/L,0,0) or permutations). Notice
that χSG(tw) = Ĉ4(0, tw). As can be readily seen, in the thermodynamic limit this is equiva-
lent to

ξ
(2)
L=∞(tw) =

√∫
dDr r2C4(r, tw)∫
dDr C4(r, tw)

. (17)

The denominator in this equation is just the SG susceptibility (7) which, as we said in
Sect. 2.2, does not self-average (and neither does the numerator). Because of this, if one
were to follow this method, a very large number of samples would be needed.

We would like to have a better statistically behaved definition of ξ(tw). In order to get it,
we start by considering the integrals9

9In what follows C4(r, tw) stands for C4(r, tw), with r = (r,0,0) and permutations. As we shall see in
Sect. 3.3, using an average over spherical shells does not achieve a significant reduction of statistical errors
in our chosen estimator for the coherence length.
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Fig. 1 (Color online) The spatial autocorrelation of the overlap field for tw = 220 and three subcritical
temperatures, as computed in our L = 80 lattice. On the left panel we show r2C4(r, tw), recall (18), while
on the right one we show r4C4(r, tw) (mind the different scales). While the signal to noise ratio of both
quantities falls equally rapidly, the problem is less severe for the computation of I2(tw) since the maximum
there is not in the noise dominated region. The curve for T = 0.7 is the average of 768 samples, while those
of T = 0.6 and T = 0.8 are computed from 96 samples

Ik(tw) ≡
∫ L/2

0
dr rkC4(r, tw). (18)

As we are going to work in the thermodynamical limit, we are interested in the regime
L 
 ξ(tw), so we can safely reduce the upper integration limit from ∞ to L/2.

With this notation and assuming rotational invariance, the second moment coherence
length is just

ξ
(2)
L=∞(tw) �

√
ID+1(tw)

ID−1(tw)
. (19)

We also recall that in [32] it was proposed to identify ξ(tw) with I0(tw),10 but this would
only be appropriate for a = 0. For a correlation function following the scaling law (13), one
can use a more general definition, because Ik(tw) ∝ [ξ(tw)]k+1−a :

ξk,k+1(tw) ≡ Ik+1(tw)

Ik(tw)
∝ ξ(tw). (20)

Definitions such as (16) and (20) suffer from systematic errors because (13) is only an as-
ymptotic formula for large values of r . Therefore, the systematic errors in these definitions
can be reduced by considering a large value of k (since the rk factor would suppress the de-
viations at short distances). However, there is also the issue of statistical errors to consider.
As we can see in Fig. 1, a large power of r pushes the maximum of rkC4(r, tw) into the
region where r 
 ξ(tw) and the signal to noise ratio of the correlation function is extremely
low. Because of this, a compromise in the choice of k is needed. Our preferred option is
ξ1,2(tw).

Even though our use of ξ1,2(tw) instead of ξ (2)(tw) already mitigates the statistical prob-
lems in the integration of C4(r, tw), we can still improve the computation. As can be plainly
seen in Fig. 1, r2C4(r, tw) starts having very large fluctuations only at its tails, where the

10The authors of [32] carefully discussed the interplay of the integration limits in (18) and the boundary
conditions. Since we restrict ourselves to L 
 ξ(tw), this is immaterial to us.
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Fig. 2 (Color online) Left: Result of computing ξ1,2 in two different ways for our 96 samples at T = 0.6.
In the orange curve we stop the integration at the cutoff point where the relative error of C4 is greater than
one third. In the blue curve we estimate the contribution of the tail from that point on extrapolating with
a fit to (21). The difference is small, but with the second method the power law behavior of ξ1,2(tw) lasts
longer. Right: Same plot for our 768 samples at T = 0.7. With the increased statistics this extrapolation is not
as important and both curves are compatible for the whole simulation. With the 63 samples of [45], the tail
contribution is as significant as in the left panel

contribution to the integral is minimal. To take advantage of this fact, we are going to use
a self-consistent integration cutoff (a method applied before in the study of correlated time
series [60]). We only integrate our data11 for C4(r, tw) up to the point where this function
first becomes less than three times its own statistical error. Of course, while this method
provides a great reduction in statistical errors, it does introduce a systematic one. To avoid
it, we estimate the small contribution of the tail with a fit to

C4(r, tw) = A

r0.4
exp

[
−(

r/ξfit(tw)
)1.5

]
. (21)

Notice that this is just the scaling function (13), using f (x) = exp[−x1.5] as our damping
function and a = 0.4. Of course, while this fit is used to estimate the contribution of the
interval [rcutoff,L/2], we actually perform the fitting for 3 ≤ r ≤ min{15, rcutoff}, where the
signal is still good. This last step is important for large tw (see Fig. 2).

As a consistency check of this method and as a demonstration of its enhanced precision
we can consider the SG susceptibility (7). This observable, χSG(tw) = Nq2(tw), coincides
with 4πI2(tw) in the presence of rotational invariance. We have plotted both expressions as a
function of time in Fig. 3. The only systematic discrepancy between the two is at short times,
when the system cannot be considered rotationally invariant (see Sect. 3.3). However, the
integral determination 4πI2(tw) is much more precise for the whole span of our simulation.

As a second check, we have plotted in Fig. 4 the integral estimators ξ0,1(tw) and ξ1,2(tw),
together with the traditional second moment estimate ξ (2) and the result of a fit to (21). As
we can see, all determinations are indeed proportional, but the integral estimators are much
more precise.

Finally, we address the issue of our error estimates by comparing our data at T = 0.7
for the 63 samples of [45] with our new simulations with 768 samples. We have explicitly
checked that the errors in C4(r, tw), computed with the jackknife method, scale as the inverse

11As our (somewhat arbitrary, yet irrelevant) choice of quadrature method we have chosen to interpolate the
data with a cubic spline, whose integral can be exactly computed.
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Fig. 3 (Color online) The SG
susceptibility χSG(tw) for our
768 samples at T = 0.7
computed from q2 and from the
integral I2:

χSG(tw) = Nq2(tw) = 4πI2(tw).
The main difference between the
two determinations is that the
second one has been computed
with a self-consistent cutoff. As
we can see, even though both
curves are compatible, the
integral one is much more
precise. The inset details the
upper right corner

Fig. 4 (Color online)
Comparison of our integral
estimators ξ0,1 and ξ1,2, (20),
with the second moment estimate
ξ(2) and the result ξfit of a fit
to (21), with a = 0.4. All the
curves become parallel at large
tw, but the integral estimators
have much smaller errors. All
curves are for our 768 samples at
T = 0.7

of the square root of the number of samples, within errors (for Gaussian distributed data, the
relative statistical error in the error estimate is ∼1/

√
2Nsamples). The fact that C4 verifies

this basic expectation is a demonstration that large deviations, which would be missed for
a small number of samples, do not appear, even for tw as large as 1010. On the other hand,
the behavior of statistical errors in integrals with a dynamically fixed cutoff is not that sim-
ple [60]. In our case, the ratio of the errors in ξ1,2(tw) (Fig. 5, left) is around 30% below
the Gaussian expectation. We have checked that a similar effect arises in the computation of
I2(tw) and that the effect of the tails is immaterial. In fact, this deviation is entirely due to
the difference in the dynamical cutoffs of both simulations, Fig. 5, right. Whenever the cut-
off coincides, the error ratio is in the expected region around

√
768/63 ≈ 3.46. The overall

consistency of our error determinations is demonstrated by Fig. 6.

3.2 The Algebraic Prefactor

One of our main goals is to provide a precise estimate of the exponent a for the algebraic part
of C4, see (13). Equilibrium methods [48–50] are not well suited to a nonequilibrium study
in the thermodynamic limit. Instead, we introduce here the method used, but not explained,
in [45].

The starting point is the realization that I1 ∝ ξ 2−a
1,2 , which would indicate that a can be

obtained from a power law fit of I1 as a function of the coherence length. Furthermore, the
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Fig. 5 (Color online) Left: Ratio of the errors in ξ1,2(tw) for the simulations at T = 0.7 with the 63 samples
of [45] and those of our simulations with 768 new samples (see text for discussion). The extrapolation to
include the tails in the integrals is immaterial for this ratio. The horizontal line is

√
768/63 ≈ 3.46. Right:

Cutoff of the Ik integrals as a function of time for both simulations

Fig. 6 (Color online) Difference
between the coherence length
ξ1,2(tw) computed with the 63
samples of [45] and with the 768
new samples (the errors are the
quadratic sum of those for each
simulation). Both curves are
compatible in the whole time
range. Mind the dramatic
statistical correlation in the sign
of this difference

large statistical correlation between I1 and ξ1,2 can be used to reduce the statistical errors
in a. However, such a fit would be quite problematic, as we would have errors on both
coordinates (the correlation of the data already poses a nontrivial problem with errors in just
one coordinate, see Sect. 2.4). Instead, we fit separately I1(tw) and ξ1,2(tw) to power laws in
the waiting time. This way, if

I1(tw) = Atcw, ξ(tw) = Bt1/z
w , (22)

we have a = 2 − cz. This relation holds for each jackknife block, which lets us take full
advantage of the correlations.

Following this method, we obtain the results in Table 2. In [45] (first four rows of Table 2)
we quoted the results for a fitting range of ξ1,2 ∈ [3,10], which is perfectly adequate for
T = 0.6,0.8 and 1.1. As we can see, χ2 appears to be a bit too large for T = 0.7, but if we
narrow the fitting range it becomes reasonable and a does not change.

As this is a very important magnitude, in this work we have increased the number of
samples at T = 0.7 by a factor of 12 with respect to [45], (from 63 to 768 samples, with
extra simulations that stop at tw = 1010, rather than 1011). This not only allows us to provide
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Table 2 Value of the dynamic exponent z and the exponent a for the algebraic prefactor for several temper-
atures. The fitting range ξ1,2 ∈ [3,10], which worked for the smaller number of samples we had in [45], does
not give good fits for I1 with our enlarged statistics at T = 0.7 (the fits for the coherence length itself are still
good). Nevertheless, if we increase ξmin to get reasonable values of χ2

I1
/d.o.f. we see that the estimate of a

does not change

T Nsamples [ξmin, ξmax] z a χ2
ξ /d.o.f. χ2

I1
/d.o.f.

0.6 96 [3,10] 14.06(25) 0.359(13) 41.7/82 49.0/82

0.7 63 [3,10] 11.84(22) 0.355(15) 82.7/81 131/81

[3.5,10] 12.03(27) 0.355(17) 52.7/71 75.5/81

0.8 96 [3,10] 9.42(15) 0.442(11) 17.1/63 12.2/63

1.1 32 [3,10] 6.86(16) 0.585(12) 18.7/46 26.1/46

0.7 768 [3,10] 11.45(10) 0.395(8) 86.9/76 269/76

[3.5,10] 11.56(13) 0.397(10) 46.6/66 101/66

[4,10] 11.64(15) 0.397(12) 40.1/58 60.4/58

[4.5,10] 11.75(20) 0.394(14) 29.6/50 35.8/50

Fig. 7 (Color online) Left: Probability density function ρ(a) of the estimate of exponent a, (13), as obtained
from a set of 63 samples. The dots with horizontal error bars are, from top to bottom: our best estimate
with 768 samples, the value with the 63 samples of [45], and the mean and standard deviation of ρ(a). The
continuous line is a Gaussian distribution with the same mean and variance as ρ(a). Center: As in left panel,
for the jackknife errors �a. The vertical line marks the standard deviation of ρ(a). Right: Histogram of the
χ2/d.o.f. parameter for the ξ fit. In all three panels the fitting range to obtain a was taken as ξ ∈ [3,10]

a better estimate of a but we are now also able to check the soundness of the statistical
procedure.

The first difficulty is that, with the corresponding reduction in statistical errors, the orig-
inal fitting window no longer provides reasonable values of our diagonal χ2 estimator. In-
stead, we have pushed the lower limit to ξ ≥ 4 (see Table 2 for details). The new value of
a(T = 0.7) is

a(T = 0.7) = 0.397(12). (23)

In accordance to the analysis of Fig. 5, the error has not decreased the factor
√

768/63
with the increase in statistics. One could say that the dynamic cutoff procedure has traded
statistical uncertainty for a reduction in systematic errors. Another contributing factor to the
large statistical error is the raising of the minimal coherence length included in the fit.
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Fig. 8 (Color online) Level curves C4(r, tw) = c for c = 0.3 (dashed lines) and c = 0.1 (solid lines) at
T = 0.6 (dotted lines are circles, for visual reference). We have restricted ourselves to the z = 0 plane, for
clarity. The innermost curve corresponds in both cases to tw = 4 and the succeeding ones correspond to
geometrically growing times (tw = 4 × 16i ). As we can see, the deviations from isotropy are mainly due to
lattice discretization (i.e., functions of r), even though there is also a small dependence on time for curves of
similar radii. The errors are smaller than the thickness of the lines (the interpolation to draw these continuous
curves from our lattice data was performed with Mathematica TM)

To understand whether the discrepancy between the new estimate of a and the one in [45]
is due to a systematic effect or to a large fluctuation, we can use a Monte Carlo method. The
probability distribution function of the estimates of a, as computed with 63 samples, can
be obtained easily from our set of 768 samples. One randomly picks sets of 63 different
samples and determines a and its jackknife error �a for each of these sets (mind that there
are

(768
63

) ≈ 2.2×1093 possible combinations). We have done this 10 000 times and computed
normalized histograms of both quantities (Fig. 7). Clearly enough, the estimate in [45] was a
fluctuation of size 2.2 standard deviations, large but not unbelievably so. On the other hand
we see that the jackknife method tends to slightly underestimate �a for 63 samples (Fig. 7,
center). Note as well that there seems to be a small bias (smaller than the error) on the
estimate of a with only 63 samples (Fig. 7, left, compare the histogram with the uppermost
horizontal point). There are two possible reasons for this. One is that a is obtained from raw
data through a nonlinear operation. The other is that the larger the number of samples, the
smaller the cutoff effects in the computation of Ik(tw).

It is amusing to compute as well the probability density of χ2/d.o.f. for fits with 63
samples. We show in Fig. 7, right, that χ2

ξ for the fit of the coherence length can be much
larger than what one would naively expect for a fit with ∼80 degrees of freedom.

3.3 Isotropy of C4(r, tw)

In the previous section we neglected the issue of the isotropy of C4(r, tw). At all times we
worked with radial functions C4(r, tw), obtained by averaging the correlation at distance r

along the three axes. In doing this, we ignored most of the N points that C4(r, tw) has for
a given tw. The main motivation for doing this is avoiding the computation of the whole
correlation function, a task which in a naive implementation is O(N2). Of course, due to the
Wiener-Khinchin theorem, we can reduce this computation to the evaluation of two Fourier
transforms which, using an implementation of the FFT algorithm [61], is an O(N logN)

task.
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Fig. 9 (Color online) Left: Comparison of Q2(r, tw = 220) with r2C4(r, tw = 220) for T = 0.6. The first
quantity is obtained by averaging over spherical shells, while the second one considers only correlations
along the axes. The behavior of Q2 is better at the tails, but does not imply any gain in practice, as both
functions are equally well behaved up to the cutoff point. Right: The coherence length computed with the

whole correlation functions, ξ
(Q)
1,2 , and with correlations along the axes, ξ1,2. Both estimates coincide for

large times

We shall examine in this section whether the complete correlation functions are isotropic
and whether we can take advantage of them to reduce the errors in our determination of
the coherence length. The first question is answered by Fig. 8, where we compute the level
curves C4(r, tw) = c for several values of c and tw. As we can see, isotropy is recovered at
quite small distances (remember we are only concerned with ξ � 3).

In order to use our integral method for a three-dimensional C4(r, tw) we must first average
it over spherical shells. We do this by defining the functions Qk(n, tw),

Qk(n, tw) ≡
∑

|r|∈[n,n+1) |r|kC4(r, tw)
∑

|r|∈[n,n+1) 1
. (24)

Notice that Q0(0, tw) = C4(0, tw) = 1 and that the division by the number of points is needed
to average over the spherical shell. Now we can use Qk(r, tw) in the same way we used
rkC4(r, tw) in the previous section. The resulting coherence length ξ

(Q)

1,2 (tw) would be ex-
pected to coincide with ξ1,2(tw) in the large tw limit, but have much smaller errors due to the
large increase in statistics. As we can see from Fig. 9, however, the correlation among the
points is so great that the gain in precision is insignificant.

We can conclude from this section that the usual approximation of considering C4(r, tw)

isotropic is a well founded one and that it is safe, and statistically almost costless, to restrict
ourselves to correlations along the axes, as we did in [45] and in the previous section. Nev-
ertheless, the computation of the whole C4(r, tw) could be rewarding if one were to study Ik ,
with k > 2.

4 Characteristic Length Scales for Dynamical Heterogeneities

The concept of heterogeneous dynamics has been recently borrowed from structural glasses
to describe non-local aging in Spin Glasses [36–38]. A coarse-grained spin correlation func-
tion may be defined for which the microscopic average is not performed on the overall vol-
ume but on cells of size D . Non-uniform aging of the system results in spatial fluctuations of
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Fig. 10 (Color online) Left: The two-time spatial correlation function C2+2(r, t, tw) (see (14)) as a function
of r , for a high value of tw = 235, and several values of t . Right: C2+2(r, t, tw) as a function of t and several
values of tw, fixing r = 10. Both figures are for our 63 sample simulation at T = 0.7

Fig. 11 (Color online) Left: Coherence length ζ(C2, tw) as a function of C2 for several values of tw at
T = 0.7 (63 samples). Right: As figure left, for T = 0.8 (96 samples)

the coarse-grained correlation functions, which can be used to define a two-time dependent
correlation length. In fact, at fixed system size and temperature one may study the two-time
dependent distribution of the coarse-grained correlation function values or, equivalently, the
distribution as a function of tw and of the global spin-spin correlation function C(t, tw), (8):
if the coarse-graining size D is larger than the correlation length, then one should observe
Gaussian statistics, while strong deviations from a Gaussian distribution are present in case
of small D [38]. Such dependence of the statistics on the coarse-graining size defines a
crossover length ζ(C2, tw) interpreted as an aging (two-time) correlation length.

It has been observed [38] that such an aging correlation length may be obtained from the
spatial decay of the two-time two-site correlation function C2+2, (14); still, the authors of
reference [38] could not measure ζ values greater than two lattice spacings. In this section
we present data from our simulations on Janus showing correlation lengths for dynamical
heterogeneities up to order ten lattice units. We show C2+2(r, t, tw) for tw = 235 and some
values of t at temperature T = 0.7 in the left picture of Fig. 10 (as for C4, we denote by
C2+2(r, t, tw) the correlations along the axes). As one can see in this figure, at large times,
correlations grow up to several lattice spacings.

In what follows it is convenient to eliminate the time t dependence in favor of the global
spin-spin correlation function C(t, tw). For given tw and C values, we obtain easily t (tw,C)

because the monotonic time dependence of the (discrete measures of the) correlation func-
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tion can be smoothly interpolated by means of cubic splines. Then, for each value of r , we
must interpolate C2+2(r, t (C, tw), tw). As one can see in the right picture of Fig. 10 there
is a sharp change in the t -derivative of C2+2, so we had to resort to a linear interpola-
tion in order to avoid the strong oscillations that a spline would have suffered from. Once
C2+2(r, t (C, tw), tw) has been interpolated at all r values, the methods of Sect. 3 allow us to
estimate the correlation length ζ(C2, tw).

In the large correlation sector, i.e. q2
EA < C2, and for large tw, the correlation length

ζ(C2, tw) approaches a tw independent value. On the other hand, one expects that for small
values of C2 (that is, C2 < qEA) and large tw, ζ(C2, tw) diverges as the coherence length
ξ(tw) defined in (13) [39]. Such behavior is represented in Fig. 11, in which we plot ζ as
a function of C2, at temperatures T = 0.7 and T = 0.8, for some values of tw. It is also
interesting to consider the ratio R(C2, tw) = ζ(C2, tw)/ξ(tw) and study how its behavior as
a function of C2 changes with tw. As pointed out above, for small values of C2 and large
tw, we expect R(C2, tw) ∼ const > 0. Moreover, since the coherence length ξ(tw) diverges
for large tw, R(C2, tw) should vanish at large waiting times when C2 > q2

EA. In Fig. 12 we
show R(C2, tw) at temperatures T = 0.6, 0.7 and 0.8. An interesting feature is the crossover
between the two sectors C2 < q2

EA and C2 > q2
EA. At T = 0.8 the qEA is too small (see

Table 4 in Sect. 5.1 below) to let us observe the small C2 behavior described above. On
the other side, data for R(C2, tw) at T = 0.6 quickly approaches a constant value for small
correlations. It seems that the larger tw, the faster the convergence to a constant, determining
in this way a crossing point. However, these data suffer from large fluctuations that do not
allow us to make any strong speculation on the crossings among curves at large values of tw.
Indeed, we know that R(C2, tw) should vanish for large C2 roughly as 1/ξ(tw), but up to
our knowledge, there is no reason for R, as a function of C2, to converge faster to a constant
when tw increases. In the bottom pictures of Fig. 12 we report the same data at T = 0.7,
averaged on both 63 (left) and 768 samples (right). Even if simulations on larger sample
statistics are not as long as those of the first 63 samples, the smoothing in the curves does
not improve the crossing definition. In addition, we have not been able to find any clear
scaling behavior of the crossing points with the waiting time.

Since at large times and small correlations ζ(C2, tw) and ξ(tw) only differ in a constant
factor (which is also close to 1), one may expect that the behavior of the two-time, two-
site correlators (14) should be analogous to that of the four point correlation function (12).
We can then probe the long distance scaling of C2+2 with the same analysis performed in
reference [45] (and in Sect. 3.2) for C4(r, tw), (13). In particular, we can extract the exponent
b of the algebraic prefactor in (15) and the dynamic exponent zζ , assuming a power-law
growth for the correlation length:

ζ(C2, tw) = A t
1/zζ
w . (25)

We fix C2 to a T -dependent value, which is a value small enough to be below the q2
EA at

all considered temperatures T = 0.6, 0.7 and 0.8 (C2 values should be compared with q2
EA

estimates given in Sect. 5.1), and large enough to have the necessary number of tw points in
order to obtain fair fits. We also had to impose a ζ1,2 ≥ 3 constraint to avoid the effects of
lattice discretization. We did not impose any upper limit to ζ , whose values hardly reach 8
lattice spacings at T = 0.8 (even less at colder temperatures), and we expect that in the time
sector considered the constraint imposed on ξ in reference [45] and in Sect. 3.2 would work
as well as in that case.
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Fig. 12 (Color online) Behavior of the ratio R(C2, tw) = ζ(C2, tw)/ξ(tw) as a function of C2 for several
values of tw. Top left: at our lowest temperature T = 0.6. Top right: at temperature T = 0.8. Bottom left: at
temperature T = 0.7 averaged over 63 samples. Bottom right: same plot as bottom left, averaging over 768
samples

Table 3 Value of the dynamic exponent zζ and of the exponent b for the algebraic prefactor, for three
subcritical temperatures. We limited the fitting window constraining the fits to ζ1,2 ≥ 3. Data at T = 0.7
averaged over 768 samples

T C2 zζ b χ2
ζ /d.o.f. χ2

I1
/d.o.f.

0.6 0.200 13.4(6) 0.43(4) 0.01/2 0.13/2

0.325 12.8(4) 0.55(3) 7.16/7 4.45/7

0.7 0.200 11.14(20) 0.508(17) 0.69/3 0.37/3

0.325 11.35(12) 0.642(9) 8.08/7 7.70/7

0.8 0.100 9.56(17) 0.497(13) 3.73/5 3.37/5

0.175 10.12(13) 0.540(10) 7.15/8 7.91/8

We summarize the obtained values of b in Table 3, reporting results for the smallest C2

attainable (that is, permitting reasonable fits) at all temperatures, as well as for larger values
of C2, for which the number of tw points allows for quite good fits. We see that b and zζ

are slightly different from the values of a and z for the four point correlators presented
in Sect. 3.2. Unfortunately our data do not permit a more precise determination for these
exponents in the deep C2 < q2

EA sector. In this respect, the determination of qEA is a crucial
issue (see Sect. 5.1).
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Fig. 13 (Color online) The
spin-spin correlation C(t, tw) as
a function of
x2 = (ζ(t, tw)/ξ(tw))2 for
T = 0.7. Inset: Close up of the
small x2 region and comparison
with our quadratic fits

5 The Time Correlation Functions

5.1 The Stationary Part of C(t, tw)

The naive computation of the stationary part of C(t, tw), C∞(t) (9), suffers from an essential
problem: how to know when tw is large enough. The consideration of characteristic length
scales may simplify this problem, as the limit tw → ∞ is equivalent to ξ(tw)−1 → 0.12 How-
ever, the approach to this limit will be acutely t -dependent. Hence, it is better to consider a
dimensionless variable,

x(t, tw) = ζ(t, tw)

ξ(tw)
. (26)

As we saw in Sect. 4, the correlation length ζ(t, tw) quickly reaches a tw-independent limit,
so x(t, tw) is essentially ξ−1(tw) in its natural units for each t . In fact, see Fig. 13 for our data
at T = 0.7, the plot of C(t, tw) against x2(t, tw) is pretty smooth for x2 → 0. Furthermore,
the curves for different t become parallel as t grows, which suggests the existence of a
smooth scaling function, C(t, tw) = C∞(t) + f (x2). We have fitted the curves C(t, x2) for
each t in the range x2 ≤ 0.5 to a quadratic polynomial (see inset to Fig. 13),

C(t, x2) = C∞(t) + a1(t)x
2 + a2(t)x

4. (27)

Unlike our treatment of the exponent a (Sect. 3.2), here we cannot skirt the issue of errors in
both coordinates. As the effect of both errors is similar, we have performed a least squares
fit and an a posteriori χ2 test, Fig. 14, right. This χ2 test was diagonal in the sense that
we did not consider correlations among different pairs of times, but we did consider the
covariance matrix for (x2,C) at the same (t, tw). Our statement that the scaling curves in
Fig. 13 become parallel is made quantitative in Fig. 14, left, which plots the coefficient a1(t)

in equation (27).
The method described above has allowed us to compute C∞(t) with remarkable accuracy

for t � 108, see Fig. 15. We can now try to perform a second extrapolation, (10), and obtain
the value of qEA for each of our simulated temperatures. In order to do this we first tried a
power law extrapolation

C∞(t) = qEA + AtB. (28)

12In what follows we shall always use the ξ1,2 estimator.
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Fig. 14 (Color online) Left: Slope at x2 = 0 of the fitting curves (27) at T = 0.7 as a function of time. Right:
Check of the fit quality using a χ2 estimator that takes into account correlations only at equal (t, tw), but
disregards correlations among different pairs of times

Fig. 15 (Color online)
Stationary component of
C(t, tw), C∞(t), obtained with
the extrapolations in Figs. 13
and 14, for all our subcritical
temperatures

This functional form yielded very good fits for T = 0.6,0.8 but the values of the exponent
B where very small, of about B ∼ −0.05. Unfortunately, the smallness of B makes the
extrapolation extremely risky. Just to be on the safe side and check explicitly that qEA > 0,
we have tried a logarithmic fitting function,

C∞(t) = qEA + A

B + log t
. (29)

This Ansatz lacks any theoretical basis, but since it is slower than any power law, we expect
it to provide a lower bound on qEA. On the numerical side, the logarithmic fit was as good
as the power law (as determined by a χ2 test). Nevertheless, as expected, it produced values
of qEA which were incompatible with those of (28) (see Table 4). Furthermore, when we
tried both extrapolating methods for T = 0.7, where we had simulated many more samples,
we found that they were somewhat forced. This leads us to conclude that the real asymp-
totic behavior of C∞(t) is probably something in between (28) and (29). We shall use the
difference between both methods with a fitting window of t ∈ [103,108] as our uncertainty
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Table 4 Estimate of qEA for three subcritical temperatures, using two different extrapolating functions. For
T = 0.6,0.8 both are very good, but at T = 0.7 (where we have better statistics) they are somewhat forced.
This suggests that the real qEA probably lies in between our two estimates. For the power law extrapolation,
(28), we also quote the exponent B . Notice that this exponent is not proportional to T

T Fitting range Logarithm Power law

qEA χ2/d.o.f qEA −B × 102 χ2/d.o.f

0.6 [102,108] 0.607(16) 34.1/17 0.730(8) 5.7(4) 31.2/17

[103,108] 0.62(3) 7.23/14 0.733(14) 5.8(7) 7.59/14

[104,108] 0.62(5) 6.25/10 0.726(24) 5.4(12) 6.32/10

0.7 [102,108] 0.497(10) 23.7/17 0.656(5) 6.16(18) 32.6/17

[103,108] 0.474(21) 18.9/14 0.637(11) 5.5(3) 18.5/14

[104,108] 0.49(5) 15.0/10 0.63(3) 5.4(9) 15.3/10

0.8 [102,108] 0.371(13) 6.50/17 0.568(7) 6.56(20) 9.39/17

[103,108] 0.368(24) 5.53/14 0.556(12) 6.2(4) 4.27/14

[104,108] 0.40(6) 4.31/10 0.56(3) 6.4(11) 3.82/10

interval,

0.62 ≤ qEA(T = 0.6) ≤ 0.733,

0.474 ≤ qEA(T = 0.7) ≤ 0.637, (30)

0.368 ≤ qEA(T = 0.8) ≤ 0.556.

Even with our unprecedentedly long simulations, we are still at the threshold of being able
to compute qEA.

5.2 Energy Density and Scaling Exponents

The time decay of the energy density offers further insights into the connection between
statics and dynamics (see Sect. 6). At all temperatures the L = 80 energy data are well
described by a power-law decay

e(tw) − e∞ = At−ε(T )
w , (31)

with e∞ the asymptotic (equilibrium) energy value. At the critical temperature Tc, general
scaling arguments relate the decay exponent ε to the dimension of the energy operator de =
(Dν − 1)/ν and the critical dynamic exponent z [58, 62]:

e(tw;Tc) − e∞;Tc = At−de/zc
w . (32)

We could then in principle extract ε(Tc = 1.1) and compare with the best estimate available
(considering ν = 2.45 by Hasenbusch et al. [54, 55] and zc = z(Tc) = 6.86 [45] we expect
ε(Tc) � 0.378). Unfortunately we do not have enough statistics at the critical temperature
to allow for fair fits and statistical accuracy in the determination of the decay exponent,
but we can avoid such difficulty. Assuming critical dynamics in all the Spin Glass phase
(T < Tc) such relation could be extended and tested at all simulated temperatures, provided
a T -dependent dynamic exponent z(T ) is considered (see Sect. 3 above). In addition, given
an inversely proportional dependence of z(T ) on the temperature, we expect that ε(T ) ∝ T .
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Fig. 16 (Color online) No
appreciable dependence of the
decay e(tw) on the system size,
for lattices L = 40 and L = 80 at
T = 0.8. Inset: the difference
between the two as a function of
Monte Carlo time

Table 5 Results for the
power-law decay parameters,
(31)

T E∞ A ε

0.6 −1.77862(10) 0.122(11) 0.193(6)

0.7 −1.77084(7) 0.148(15) 0.236(7)

0.8 −1.75947(7) 0.155(16) 0.268(7)

0.9 −1.74429(13) 0.19(1) 0.312(5)

Once the exponent has been determined for some values of T < Tc, we can extrapolate to
determine ε(T −

c ). The exponent may be in principle discontinuous at the critical point, so
some analysis has been performed also at T = 1.15, slightly higher than Tc, to have a hint
on the possible value of the right limit ε(T +

c ).
At all temperatures a fit to a power law (31) is quite sensitive to the fitting window. This

is not surprising as the early dynamics may be very different from the asymptotic behavior.
In addition, we are aware that our data may suffer from important finite size effects when
the coherence length grows up over some fraction of the system size (see [45]). The limit in
tw beyond which data for some observable cannot be considered in the thermodynamic limit
depends on temperature and on both the observable and the precision with which it can be
measured (which for the energy is very high, of order one part in 105). At each temperature,
the upper limit in the fitting window should then in principle depend on when, in Monte
Carlo time, we start experiencing finite size effects in the energy. We can check this by
comparing with the energy decay of systems of size L = 40. As an example, in Fig. 16
we report the difference eL=40(tw) − eL=80(tw) at T = 0.8 as function of tw: no appreciable
deviations appear in the whole simulated range, allowing us to extend our fit to the largest
available time. We are then left with adjusting the lower limit tmin by checking that the fit
parameters e∞, A and ε go to stable values.

Results for ε as function of tmin at all simulated temperatures are depicted in Fig. 17,
left. At low temperatures it has been possible to probe for tmin ranging in several decades.
At higher T , it is not possible with our data to have fair fits at larger tmin values, as very
large fluctuations arise, thus hiding any possible plateau (error bars are from a jackknife
procedure).

At T = 0.6, 0.7, 0.8 we considered the parameters converged in the last five points in
Fig. 17 left; at T = 0.9 the last three points converged within error bars. In any of these
intervals, we take the mid-point as the plateau values, and report them in the plot of Fig. 17
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Fig. 17 (Color online) Left: dependence of ε on the fitting window. For each choice of the lower limit
tmin we fit for all points tw > tmin. We do not assume any upper limit in the fitting window (see text). At
lower temperatures we find tmin-independent parameters, with clear plateaus showing up. For each curve the
plateau value is taken considering the midpoint in the last longer series of an even number of points lying on
an horizontal line within error bars. At T ≥ 1.1 no clear plateau appears, while large fluctuations spoil the
fits. The horizontal line is a prediction for ε(Tc) considering the value of the critical exponent ν of [54, 55]
and zc = z(Tc) = 6.86 from Table 2. Right: the plateau values for ε(T ) for simulated values of T ≤ 0.9 as
function of T (empty circles, red). A proportionality law ε(T ) = cT works well, and allows one to extrapolate
ε up to Tc = 1.1 (the upper full circle, blue). The horizontal line is the best estimate by taking the ν value
of [54, 55] and zc from Table 2

right (corresponding values of all parameters are reported in Table 5). The data are well
represented by a temperature-proportional law, with χ2/d.o.f. = 4.8/3. The extrapolated
value of ε(T −

c ) is 0.373(5), which coincides within errors with the best estimate reported
above. This is a quite good a posteriori confirmation that the procedure described is robust,
leastwise, within the precision attainable. From Fig. 17 left, we see that at T = 1.1, 1.15 we
were not able to identify a clear plateau and estimate ε directly, still there is a trend towards
the expected critical value, supporting that ε(T ) should be linear up to the critical point at
least.

From the values of ε(T ) = (3ν − 1)/(νz(T )),13 we obtain z(0.6) = 13.4(3), z(0.7) =
11.0(3) and z(0.8) = 9.7(3) in agreement with the results of Table 2.

Alternatively we can link these numerical results with an analytical one obtained by Franz
et al. [63] (see also [64]). In this reference, the contribution of the interface was computed
in the framework of Replica Symmetry Breaking. Assuming the power law behavior of
the coherence length, one would expect that ε(T ) = 2.5/z(T ). So, inputting our values for
z(T ) we obtain ε(T ) = 0.33T , which is compatible with our numerical finding (ε(T ) =
0.340(5)T , see Fig. 17 (left)).

We conclude this section by testing in nonequilibrium simulations (see also [65]), the
correction-to-scaling exponent measured by Hasenbusch et al. [54, 55] ω = 1.0. Our data at
Tc = 1.1 are well described by a double power-law (for tw > 26, ω = 1.0, ε = 0.378)

e(tw) − e∞ = At−ε
w

(
1 + Bt−ω/zc

w

)
, (33)

giving e∞ = 1.70201(2), A = 0.149(2), B = 1.25(5) and χ2/d.o.f = 104.20/102.

13The formula is expected to be valid if the value of the exponents below the critical temperature are con-
trolled by their value at Tc.
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Table 6 Exponents c and d and parameter A′ of (34) and (38). The values of c come from fits, whose χ2 we
also show. The exponent d comes from d = −cz, where z is the dynamic exponent of (22) and Table 2. Fits
are limited to the time range where the system is free of finite size effects, which accounts for the different
numbers of degrees of freedom for each temperature

T tw tmin c(tw) d(tw) A′(tw) × 103 χ2/d.o.f.

0.6 2 106 −0.1525(23) 2.14(5) 2.6(6) 14.7/64

4 106 −0.1495(22) 2.10(5) 2.8(8) 15.5/64

8 106 −0.1459(20) 2.05(4) 2.5(10) 17.4/64

16 106 −0.1430(19) 2.01(4) 2.4(12) 17.5/64

0.7 2 106 −0.1787(14) 2.067(27) 1.47(25) 23.3/50

4 106 −0.1765(13) 2.041(26) 1.8(3) 18.4/50

8 106 −0.1733(12) 2.004(25) 1.7(4) 18.9/50

16 106 −0.1704(12) 1.971(25) 1.6(5) 15.4/50

0.8 2 106 −0.210(8) 1.98(9) 1.7(10) 13.9/32

4 106 −0.212(7) 2.00(8) 2.8(12) 11.1/32

8 106 −0.208(7) 1.96(8) 3.0(14) 10.8/32

16 106 −0.205(6) 1.93(7) 3.0(18) 8.43/32

5.3 The Thermoremanent Magnetization

The thermoremanent magnetization of a SG has been known since the 1980s to decay with
a power law [66, 67] (deviations to this simple behavior were observed only extremely close
to Tc, namely T > 0.98Tc). As we said in Sect. 2.2, this observable can be identified with
C(t, tw) for fixed tw and t 
 tw. Following [68], we have fitted our data to a decay law

C(t, tw) = A′(tw) + B(tw)tc(tw). (34)

The constant term A′(tw) is justified because for a finite number of samples, the correlation
function does not go to zero for large times. The very same problem arises in the analysis of
experimental data [66] (it was solved by taking a numerical derivative).

We summarize the results of these fits on Table 6. We fixed tw = 2,4,8,16 and fitted our
data up to the point where finite size effects appear (t < 2×1010 for T = 0.7, t < 4×108 for
T = 0.8 and the whole range for T = 0.6). We started our fits at t = 106, but this limit can
be varied along several orders of magnitude with no change in the fitting parameters or the
goodness of the fit. As we can see, the exponent c has a slight, but systematic, dependence
on tw. This tendency was already observed by [32].

Our estimates for c can be compared with experimental values [66]

c(T = 0.55Tc) ≈ −0.12,

c(T = 0.67Tc) ≈ −0.14, (35)

c(T = 0.78Tc) ≈ −0.17,

(the error bars on these exponents are small, not much larger than the size of the plotted
data points in Fig. 3b of [66]). When compared with the values in Table 6, the experimental
exponents are similar but slightly higher (let us recall that 0.6 ≈ 0.55Tc, 0.7 ≈ 0.64Tc and
0.8 ≈ 0.73Tc).



An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses 1147

Fig. 18 (Color online)
C(t, tw = 2) as a function of
T log(t) for three subcritical
temperatures. The inset shows
that the scaling holds only
approximately

A different approach comes from realizing that in experimental work t and tw typically
differ by at most 4 orders of magnitude, while in our fits they differ by as many as 9 or 10.
Taking this into account, it is interesting to consider a power law where the fitting window
is shifted with tw so that 1 ≤ t/tw ≤ 10 [45],

C(t, tw) = A(tw) (1 + t/tw)−1/α(tw) . (36)

Using this functional form and extrapolating −1/α(tw) to a typical experimental time with
a quadratic fit we obtain

−1/α(tw = 100s) ≈ −0.11, T = 0.6 ≈ 0.55Tc,

−1/α(tw = 100s) ≈ −0.12, T = 0.7 ≈ 0.64Tc, (37)

−1/α(tw = 100s) ≈ −0.14, T = 0.8 ≈ 0.73Tc.

These extrapolations are slightly above the experimental values of (35), but if both sets of
exponents are interpolated with a parabola, the two curves result roughly parallel, i.e., our
extrapolation error seems temperature-independent.

Since both the thermoremanent magnetization, (34), and the coherence length are well
described by a power law, it follows that C(t, tw) should be a power of ξ(t + tw), at least for
the small values of tw in Table 6,

C(t, tw) ∼ ξ(t + tw)−d . (38)

Indeed, following the same procedure we used for the exponent a of (13) (see Sect. 3.2) we
have computed the values of d for tw = 2,4,8,16 (Table 6), obtaining d ≈ 2. Incidentally,
let us remark that the coherence length is notoriously difficult to access experimentally [5],
while the thermoremanent magnetization is a pretty standard measurement. Equation (38)
then appears as an interesting, albeit indirect, way of estimating experimentally an effective
coherence length.

Notice that the exponents c(tw) of Table 6 are roughly, but not exactly, linear in T . This
suggests that the thermoremanent magnetization should be a temperature-independent func-
tion of T log(t) [67]. Figure 18 shows that this is only an approximate claim.

The incompatibility of the values in (35) and (37), together with the fact that we needed
the constant term A′(tw) in (34), suggests that there probably exists a systematic error in the
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Table 7 Parameters of a fit to (39), offering an alternative description of the thermoremanent magnetization.
For each temperature, the maximum time included in the fit was such that ξ(tmax) = 10

T tw tmin e(tw) f (tw) χ2/d.o.f.

0.6 2 103 −0.236(7) 0.873(9) 52.2/104

106 −0.30(6) 0.82(5) 13.9/64

4 103 −0.203(6) 0.909(8) 47.9/104

106 −0.25(4) 0.85(4) 13.5/64

8 103 −0.176(4) 0.943(7) 41.5/104

106 −0.21(3) 0.90(4) 13.9/64

16 103 −0.158(4) 0.968(7) 38.1/104

106 −0.19(3) 0.92(4) 15.3/64

0.7 2 103 −0.263(4) 0.890(4) 43.0/90

106 −0.32(3) 0.84(3) 14.4/50

4 103 −0.230(3) 0.921(4) 71.9/90

106 −0.29(3) 0.862(25) 12.8/50

8 103 −0.2003(23) 0.955(3) 94.1/90

106 −0.253(23) 0.895(23) 13.0/50

16 103 −0.1768(20) 0.985(3) 138/90

106 −0.226(19) 0.921(22) 10.6/50

0.8 2 103 −0.302(16) 0.891(16) 45.1/72

106 −0.5(3) 0.77(15) 14.3/32

4 103 −0.257(12) 0.934(14) 63.6/72

106 −0.6(4) 0.71(17) 11.4/32

8 103 −0.223(10) 0.970(13) 69.8/72

106 −0.49(24) 0.76(12) 11.1/32

16 103 −0.192(8) 1.008(12) 65.9/72

106 −0.40(19) 0.81(12) 8.49/32

power law fits of Table 6.14 One may consider an alternative description,

C(t, tw) = A′′(tw) exp
[
e(tw)(log t)f (tw)

]
, (39)

that would reproduce a power law if f (tw) = 1. Equation (39) should not be confused with
the stretched exponential, discarded in reference [66] for all T but the closest to Tc. We show
our results for this fit in Table 7. From the point of view of a χ2 test, the two descriptions,
(34) and (39), are equally good. The fit parameters are remarkably stable with variations of
the fitting window. As we see, the values of f (tw) are very close to, but incompatible with,
1 (at least for the lowest temperatures).

Let us conclude this section by considering again the effects of statistical data correlation
on fit parameters. Specifically, let us consider the exponent α(tw) of (36), see Fig. 19 and
reference [45]. The alert reader will notice strange wiggles, large as compared with the error
bars, which are specially prominent for the fit with 63 samples. The reason is that data for
different t and tw in this fit are even more correlated than usual. In fact, we have sampled

14Note, however, that the smallest value of C(t, tw = 2) that we reach is ∼0.013, pretty large as compared
with A′(tw).
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Fig. 19 (Color online) Exponent α(tw) defined in (36) as a function of tw at T = 0.7, computed for the 63
samples of [45] and for our 768 samples. The right panel shows the values of diagonal χ2 for both fits

the function C(t, tw) for t and tw integer approximations to 2i/4, i = 0,1, . . . . For each
tw, we perform the fit and extract α(tw) for tw ≤ t < 10tw. In other words, for each tw we
used 14 values of t . Recall that the spin configurations involved are the one at time tw, and
the 14 spin configurations at succeeding times t + tw. Given our choice for integer t and
tw, it follows that, for the next tw, in the computation of C we will use 13 out of the 14
spin configurations used at the earliest tw. For the second-next tw, the number of repeated
configurations will be 12, and so forth. This is the origin of the dramatic data correlation:
the very same spin configurations are being used for consecutive times. Notice that when
the statistics is increased to 768 samples, the period of these oscillations does not change,
but their amplitude decreases. Also in Fig. 19, right panel, we show the value of χ2/d.o.f.
for the fits with 63 and 768 samples. In both cases, χ2 decreases strongly with tw, but, while
the fit with 63 samples was perfectly reasonable from tw ∼ 104, that with 768 samples is
not good until tw ∼ 108. The increased accuracy reveals systematic deviations from (36).
Nevertheless, the estimate of α(tw) for both fits is compatible in a much wider range.

5.4 Clink as a Function of C2

Studying Clink as a function of C2 for fixed tw we can monitor the scaling of the active
domains’ surface area. This scaling has an exact correlate in equilibrium studies [69, 70],
where one considers the probability distribution function of

Qlink = 1

ND

∑

〈x,y〉
σ (1)

x σ (2)
x σ (1)

y σ (2)
y . (40)

The analogue of Clink as a function of C2 is the conditional expectation value 〈Qlink|q2〉.
Indeed, in [45], we quantitatively compared our dynamical results with the equilibrium
〈Qlink|q2〉 of [69, 70]. It was found that a convenient time-length dictionary could be
established in such a way that the equilibrium results for finite lattices reproduced the
nonequilibrium results for finite ξ(tw). For instance, for T = 0.7, when L/ξ(tw) ≈ 3.7,
Clink(C

2, tw) � 〈Qlink|q2〉L.
In [45] it was found that Clink is a smooth increasing function of C2 at least up to experi-

mental scales. On the other hand, for systems undergoing coarsening dynamics (e.g., a dis-
ordered ferromagnet), Clink tends to a constant C2-independent value whenever C2 < q2

EA.
Let us briefly justify these expectations.
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On the one hand, since in the RSB scenario the coherent domains are not compact objects,
one would expect Clink to have the same aging properties as C2, that is, dClink/dC2 should
not vanish. This is the nonequilibrium analogue of the overlap equivalence property [69,
70]. For instance, in the Sherrington-Kirkpatrick model it is straightforward to show that
Clink = C2.

On the other hand, to find the scaling for a coarsening image of compact active droplets
we need a more elaborate argument. We consider a large droplet of size ξ(t + tw) at time
t + tw that, at time tw, was made of NC smaller droplets of size ξ(tw). The number of spins
in the boundary of a droplet at time tw scales as ξ(tw)Ds . Typically, Ds = D −1, but one may
have D − 1 ≤ Ds ≤ D [6, 19–22] (for the TNT model of SG, D − Ds ≈ 0.45 for D = 3,
see [71] and [25]). Of course, NC scales as NC ∼ [ξ(t + tw)/ξ(tw)]D . The overlap of each of
the NC droplets at time tw with the configuration at time t + tw is randomly ±qEA. Hence,
the scaling of C(t, tw) is, for the region C < qEA,15

C(t, tw) ∼ √
NC

(
ξ(tw)

ξ(t + tw)

)D

∼
(

ξ(tw)

ξ(t + tw)

)D/2

. (41)

Now, for the link overlap we expect (C0
link is the equilibrium expectation value of Qlink)

Clink(t, tw) = C0
link + NC

ξDs(tw)

ξD(t + tw)
. (42)

In fact, the decay of Clink(t, tw) comes mainly from the contribution of droplets’ surfaces at
time tw. In particular, for t → ∞, the excess of Clink over C0

link is just the probability that a
link belongs to the surface of a droplet at time tw. Now, considering (41) we conclude that
the number of droplets NC scales with C(t, tw) as

NC ∼ g(C)

C2
, (43)

where the function g(C) is continuous, but not necessarily differentiable at C = 0, and
where g(0) > 0. Combining (43) and (41) we get

Clink(t, tw) = C0
link + C1

linkg(C)ξDs−D(tw). (44)

In the above expression C1
link is a constant. Notice that, in particular, (44) implies that the

derivative of Clink with respect to C2 goes to zero as tw → ∞.
We can easily check (44) for the two-dimensional Ising model, where the Onsager and

Yang solutions provide exact values for C0
link and qEA (in this case D − Ds = 1). As for the

growth of the coherence length, it scales as t
1/2
w (see, for instance [73]). As expected, see

Fig. 20, Clink tends to a constant function Clink(C, tw → ∞) = C0
link for C < qEA. As we

show in Fig. 20, right, the approach to this constant is well described by (44).
As for the Edwards-Anderson model, Clink is seen to be a very smooth function

of C2 [45], so we can easily compute the curve Clink(C
2 = 0, tw) with a linear extrapo-

lation. We can also study C4(r = 1, tw), which is the nonequilibrium disorder average of

15Even if (41) is intuitively evident, it can be backed by an explicit computation. From Eq. (6-11) in [72],
one easily shows for the Ising ferromagnet that the spin-spin correlation function takes the form of a series
C(t, tw) = a1y + a2y2 + . . ., where y = ξD/2(t + tw)ξD/2(tw)/[ξ2(t + tw) + ξ2(tw)]D/2. Equation (41)
follows when ξ(t + tw) 
 ξ(tw).
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Fig. 20 (Color online) Left: Clink as a function of C for the two-dimensional ferromagnetic Ising model at
T = 0.66Tc. Results obtained for an L = 4096 lattice (the results were averaged over 20 trajectories). Right:
Numerical check of (44) for the data on the left panel. The vertical line is at C = qEA. We see that, for large
tw and C < qEA, Clink(C, tw) − C0

link scales as ξ−1

Fig. 21 (Color online) Extrapolation of Clink(C2, tw) to C2 = 0, together with C4(r = 1, tw), against
ξ−1

1,2 (tw) (left) and ξ−0.45
1,2 (tw) (right) (plot for our 96 samples at T = 0.6)

Qlink(tw), (40). The two curves are plotted against ξ−1(tw) and ξ−0.45(tw) in Fig. 21. In accor-
dance with the previous discussion, and in particular with the relation Clink(C

2 = 0, tw(L)) =
〈Qlink|q2 = 0〉L, both have the same extrapolation to infinite time (they actually collapse on
the same curve for large times). Of the two, the ξ−1 scaling is more convincing.

Equation (44) suggests plotting dClink(C
2, tw)/dC2 (see [45] for details) against ξ−1(tw)

(Fig. 22, left) and against ξ−0.45(tw) (Fig. 22, right). It is important to choose a value C2∗
of C2 smaller than q2

EA but not too small, because otherwise the numerical estimate for the
derivative would be unreliable. We have used the most pessimistically small estimates of q2

EA

in Table 4. The two representations are linear within our errors. However, while a ξ−1(tw)

scaling compatible with standard coarsening seems falsified (the extrapolation to infinite
time is well above zero), a ξ−0.45(tw) scaling towards zero is compatible with our data.

From Fig. 21 and (44), we conclude that the difference Clink(C
2, tw) − C4(r = 1, tw)

should vanish as ξDs−D(tw) in a coarsening system. We show this difference in Fig. 23, for
the same fixed value C2∗ we used for the derivative. As we see, the extrapolation as ξ−1

is smooth and positive. On the other hand, the ξ−0.45 scaling could only be possible if our
whole simulation were in a pre-asymptotic regime.
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Fig. 22 (Color online) Derivative of Clink(C2, tw) with respect to C2 versus ξ−1(tw) (left) and versus
ξ−0.45(tw) (right) for three subcritical temperatures (T = 0.6,0.7,0.8, from top to bottom). Lines are linear
least squares fits. We mark by crosses our extrapolations for the experimental scale of ξ(tw = 100s). The
curves are plotted for a fixed value C2 = C2∗ , chosen to be just below our lower bound for qEA at each
temperature from (30)

Fig. 23 (Color online) Difference Clink(C2∗ , tw) − C4(r = 1, tw) for the same C2∗ of Fig. 22. The curves are
plotted against ξ−1(tw) (left) and against ξ−0.45(tw) (right). An extrapolation to zero seems unlikely even
for the ξ−0.45 case

This discussion notwithstanding, two comments are in order. First, (44) relies on (41),
which is disproved by the values of exponent d in Table 6 (we obtain d ≈ 2, rather than
d = 3/2). Second, we mark by crosses in Fig. 22 the experimentally relevant scale: the
derivative is certainly nonvanishing there in either case.

6 Scaling of the Dynamical Coherence Length

As we have shown in Table 2, our data for the coherence length is very well represented
by a power law in tw. We found an exponent z(T ) roughly linear in T −1. Some theoretical
grounds for this behavior can be found in [68, 74, 75]. It also appears in the numerical simu-
lation of the Sherrington-Kirkpatrick model [76]. Nevertheless, an alternative interpretation
has been suggested [15]. We now reanalyze our data under this light.
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6.1 Mixed Scaling

The Saclay group proposed [15], see also [12], a mixed scaling for the dynamical coherence
length, which assumes both critical behavior and activated dynamics in a wide range of
temperatures in the glassy region:

tw ∼ τ0ξ
zc exp

(
Y (T )ξψ

T

)
, (45)

where τ0 is the microscopical time associated to the dynamics; zc is the dynamical critical
exponent computed at the critical point; ψ is the exponent that takes the free energy barriers
into account (from the dynamical point of view) and Y (T ) = Y0(1 − T/Tc)

ψν , with the ν

exponent being the static critical exponent linked to the coherence length. Near the critical
point Y (T ) → 0 and the power law critical dynamics is recovered.

To asses the validity of the mixed scaling hypothesis, we consider the following func-
tion [15]:

G(tw, T ) =
(

log(tw/τ0) − zc log ξ(tw, T )

ξψTc/T

) 1
ψν

. (46)

Equation (45) would imply that G(tw, T ) is a tw-independent function of temperature,

G(tw, T ) = G0

[
1 − T

Tc

]
, (47)

where G0 = (Y0/Tc)
1/(ψν). Both the Ising and Heisenberg experimental samples16 behave

consistently with this expectation. In this study, the parameters were taken to be zc = 5 and
ψ = 1.5 (those of AgMn, a Heisenberg SG) [15].

Notice that G(tw, T ) would be exactly zero if ξ followed a pure power law with z and τ0

fixed to their critical temperature values,

ξ(tw) =
[

tw

τ0(Tc)

]1/z(Tc)

, (48)

In the case of a power law with parameters τ and z different from those computed at the
critical point, we expect that the function G(tw, T ) should be zero only for tw → ∞. In
order to avoid a painful and somewhat arbitrary fit, we take the relevant parameters in (46)
from the literature (z and τ0 are taken at Tc): Tc = 1.109 [54, 55], ψ � 0.7 [32], zc = 6.86
[45] and ν = 2.45 [54, 55].

In Fig. 24 left, we show the function G(tw, T ) for four values of the temperature (in-
cluding Tc). Although G(tw, T ) is not tw-independent, it plateaus at a value Ga(T ) for long
times. This is especially clear for T = 0.6 and T = 0.8, while at Tc we expect it to be com-
patible with zero. For T = 0.7 the plateau is not well defined, but we estimate it as the
average of the last points.17 As we show in Fig. 25, Ga(T ) behaves consistently with (47).
Hence, we are in a time region where experimental results for G(tw, T ) are reproduced.

However, we will remark the following points:

16Ag:Mn at 2.5% (Heisenberg like), CdCr1.7In0.3S4 (also Heisenberg like) and Fe0.5Mn0.5TiO3 (Ising like).
17In order to assign error bars to the plateau values, we consider only the biggest contributions, those from
the uncertainties in zc and in τ0(Tc).
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Fig. 24 (Color online) Left: Function G(tw, T ) defined in (46) versus tw, for T = Tc = 1.1, T = 0.8, T = 0.7
and T = 0.6. Our estimates for the plateau (see text) are indicated with horizontal lines. The continuous
curves are G(tw, T ) as computed from a slight modification of (49) where we fixed τ0(T ) = τ0(Tc), and took
z(T ) from Table 2. At T = 0.8 we also show our data for L = 40. Right: As in left panel, but now we allow
τ0 to depend on T , (49)

Fig. 25 (Color online) The
plateaus Ga(T ) in Fig. 24 against
T/Tc. The line is a linear fit
(χ2/d.o.f. = 0.12/1), that
extrapolates to zero at
T/Tc = 1.12(21), which is
compatible with one

1. The departure of the curve for T = 0.8 from the plateau in Fig. 24 is a finite size effect,
as shown explicitly by our L = 40 data (see also [45]). A similar, though milder, effect
afflicts the data for T = 0.7 for tw > 2.2 × 1010. The same effect is very clear at Tc, for
even shorter times.

2. Were ξ(tw) a power law, the curve for G(tw, T ) would be decreasing (for larger times).
On the other hand, we know that finite size effects cause it to increase. The plateau may
well be an artificial combination of these two effects.

To clear up this problem, we also show in Fig. 24, right, the value of G(tw, T ) computed
using the coherence length and τ0(T ) from a fit to

ξ(tw) =
[

tw

τ0(T )

]1/z(T )

. (49)
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Fig. 26 (Color online)
Coherence length ξ1,2(tw) as a
function of T log tw, for three
subcritical temperatures. Even if
the three curves are not equal
within errors, the overall scaling
is suggestive

Note that, at variance with (48), we now allow τ0 to depend on T . These fits were reported in
Table 2. Specifically, we obtained τ0(T = 0.6) = 0.008(3), τ0(T = 0.7) = 0.030(8), τ0(T =
0.8) = 0.17(4) and τ0(Tc) = 0.58(13).18

Although the physical meanings of (46) and (49) are quite different, the two of them
account fairly well for our data.

However, (49) describes well the data in nearly the whole range of times (actually for
ξ � 3) while (46) describes the data only in the region where the right hand side of (46),
computed with (48), is nearly constant. Moreover the data for ξ(tw) nearly collapse if we
use the variable T log tw, see Fig. 26. This collapse is not compatible with (45). Henceforth,
the activated scaling hypothesis, (45), implies that our data are entirely in a pre-asymptotic
regime. We note nevertheless that extrapolating our data with (49) to the relevant experi-
mental scale (tw = 1014 or 100 seconds) produces fairly sensible results [45].

7 Conclusions

Using the special-purpose computer Janus, we have studied the nonequilibrium dynamics
of the Ising spin glass for times spanning eleven orders of magnitude. We have looked into
quantities not considered in our previous work [45] and extended the simulations described
therein by considering more temperatures and vastly enlarging the number of samples for
T = 0.7. The emerging picture is that of non-coarsening dynamics.

We have performed an extensive investigation of heterogeneous dynamics, by consid-
ering the two-time, two-site correlation function C2+2(r, t, tw). We have obtained the first
reliable determination of the nonequilibrium correlation length and the exponent for the al-
gebraic decay of C2+2. When t is much smaller than tw, the correlation length reaches a
tw-independent limit. On the other hand, for t much larger than tw, the correlation length
scales as the coherence length. Thus, it might be sensible to exchange the role of both length
scales in the study of structural glasses [59], where a notion of a coherence length is lacking.

18We have found a monotonic (decreasing) behavior for the microscopic time just as in Ising samples
(Fe0.5Mn0.5TiO3) [77]. However, Heisenberg samples have no such clear pattern: CdCr1.7In0.3S4 shows
decreasing monotonic behavior but Ag:Mn at 2.5% and Cu:Mn at 6% [5] present an increasing monotonic
one.
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Crucial to the above findings have been our integral determinations of characteristic
length scales. We have also used them to obtain the coherence length and to study the repli-
con mode. Indeed, the exponent a in (13) is definitively nonvanishing, and hence incompat-
ible with the droplets picture. We have also considered nonequilibrium overlap equivalence,
with the help of the coherence length.

We have used both the coherence and correlation lengths to obtain safe bounds for the
Edwards-Anderson order parameter below the critical temperature.

As for the thermoremanent magnetization, good agreement with experimental determina-
tions of the temperature-dependent decay exponents has been obtained. A potentially useful
observation for experimental work is that the thermoremanent magnetization scales with the
coherence length, which is much harder to measure. We also observed that a non power law
function could fit the thermoremanent magnetization equally well.

The energy relaxation is well described by a power law (see also [62]). The exponents
displayed a nearly linear dependence on temperature. It has been possible to extrapolate to
the critical point, finding results in nice agreement with the latest determinations [45, 54,
55].

We have shown that the link overlap correlation function Clink offers a wealth of infor-
mation on interphase behavior. Our results have been equally compatible with the droplets
and RSB pictures. However, in the droplets picture the scaling with the coherence length of
the thermoremanent magnetization is incompatible with our data. Furthermore, irrespective
of what happens for infinite time, the variation of Clink with C2 is nontrivial at experimen-
tal time scales. This means that the physical view conveyed by the RSB theory is a better
representation of the physics at the scale of a few hours.

We have critically examined the time growth of the coherence length, comparing critical
and activated dynamics. We have found that both theories describe its behavior equally well.

Finally, we have taken the occasion to give full details of our analysis methods, some of
which are quite new.
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